CYGNUS/LCI—WM#3 October 5, 2010
Exercises on Thermal Analysis J.D.Sullivan

This memo lists several exercises in thermal analysis as background for more detailed analysis
of LCI and its components. For cach excreise list any simplifying assumptions made.

Exercise 1
Consider a sphere at 1 AU from the sun. What is the steady state temperature if

(a) a=€=17

(b} & = ¢ =0.057
(¢) @ =0.05 and € = 0.17
(d) @ = 0.1 and € = 0.05?

Exercise 2
Consider a 50 kg polished aluminum sphere at 1 AU from the sun.

(a) What is the steady state temperature?
(b) What is the steady state temperature if there is an internal heater dissipating 50 W
uniformly throughout the sphere?

How are these answers affected (changed) if the aluminum is anodized?

Exercise 3

Consider an object consisting of a 25 kg polished aluminum sphere inside a 25 kg polished
aluminum spherical shell; the diameter of the shell is twice that of the sphere. The object is
located at 1 AU from the sun.

Remark: Ignore how the sphere is held inside the shell.

(a) What is the steady state temperature of the sphere? of the shell?
(b) If 50 W of power is dissipated uniformly in the sphere, what is the steady state tem-
perature of the sphere? of the shell?

Remark: This is the typical 1 W/kg for spacecraft instruments.

How are these answers affected (changed) if the shell is made of polished magnesium?

Exercise 4
Consider the object described in Exercise 3 with 50 W of power dissipated uniformly in the
sphere but now located in low Earth orbit LEO.

Remark: Ignore how the sphere is held inside the shell.

What is the steady state temperature of the sphere and of the shell if the object is located

(a) at noon, i.e., centered on the sunlit hemisphere?
(b) at midnight, i.e., in full eclipse?

Assuming the object enters the eclipse abruptly, plot the temperature of the sphere as a
function of time (from entering the eclipse zone).
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Exercise 5

Consider the object from Exercise 4 but now specify the suspension of the sphere in the
shell as a tetrahedral space frame made from copper with the diameter of each strut equal to
one-twentieth of the diameter of the sphere. The object is still in LEO with 50 W of power

dissipated-uniformly in the sphere.
What is the steady state temperature of the sphere and of the shell if the object is located

(a) at noon, i.e., centered on the sunlit hemisphere?
(b) at midnight, i.e., in full eclipse?

Assuming the object exits the cclipse abruptly, plot the temperature of the sphere as a
function of time (from exiting the eclipse zone).
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! K\'l/:higure 1. Assume that the surface of the inner sphere is at a uniform temperature 7, and
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3.2 Heat transfer processes

'
/\)'\ 3.2.1 Radiation

4

‘Consider the radiative heat transfer between two concentric spheres as were shown in

that the surface of the outer sphere is at a uniform temperature 7, . Let 4, and &, be the
surface area and emissivity of the inner sphere, respectively, and 4, and &, be the
surface area and emissivity of the outer sphere, respectively. Also assume that the
surfaces of the spheres are diffuse-gray.

This problem has been presented as Example 8-3 in the textbook of Siegel and Howell
(1972) to illustrate the use of the net radiation method for the solution of radiative heat
transfer problems. The net radiative heat flow supplied to the smaller sphere is shown to

be —=_

e e A

_ 40T T (& =& ’C T A (- [ /5<1>
Qrad 4 L 4
1 4] 1 N
T 4, g(T)_l / # 7‘ )
81(1 9 Le2=0) // ,{Qj A’
where o 1mﬂzmann constant (5.67-10-8 W/(m2K#)). The notation has been

chosen to emphasize the fact that the emissivities of both spheres may be functions of A £

i

temperature. Here the sign has been chosen to be positive for the case where the inner
sphere is a net receiver of energy (7, >7;) and negative for the case where the inner
sphere is a net supplier of energy (7, <7,).

Equation (1) is not very practical, since using it requires that we know the value of the
emissivity of the furnace liner &,(7,). Usually we do not. However, if the size of the
inner sphere is smail when compared to the size of the outer sphere and if the emissivity
of the outer sphere is not very small, Equation (1) simplifies to

0. = &a@AcT T )

which means that the net radiative heat flow is independent of the emissivity of the
outer sphere. This result was also derived by Siegel and Howell.
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