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The Infinite Well 

Today we are learning a little more complicated system that solves: 

 

ˆ ( ) ( )r E r H  

 

Here, the Hamiltonian includes a potential: 

 

V=∞  x ≥ a, x ≤ 0 

V = 0  0 < x < a 

This system is very simple, but also very useful for solid state as a model of 

a quantum well.  An example is GaAs and AℓAs two materials with a band 

gap that traps an electron. 
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back to the infinite well problem…Solving for energy levels: 
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Two ways to express the result:
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Probability, but n=0 gives all probability zero - so the state is not allowed.
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   where  is a phase term - final result:
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☼ Homework:  3.11 and 4.1 
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Dirac Notation 
( )                                ( )
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Hilbert Space 

We have real space, 3-basis vector: ˆ ˆ ˆ
x x y y z z

r r e r e r e   .  Generalize this 

concept to ‘more large’ – any kind of state can write: 
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( )     continuous Fourier tranform is special treatment
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