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Today we are going to study the selection rule of the Hydrogen atom.  When 

excited above ground state, an electron will return to ground state and emit a 

photon.  Transitions take place between energy states , ,n l m . The transition 

rule determines whether or not the transition is allowed between , ,n l m  and 

', ', 'n l m .  The emitted photon energy is equal to the difference in the 

energy of the two states 
'n n

E E   . 

 

Before we discuss this, we review what we already learned because it is 

important to understanding the selection rules.  Do you remember angular 

momentum?  We had these operators; 
2ˆ

ˆ
z

L

L
 

 

First we find the eigenvalue and the eigenfunction.  The eigenfunctions are 

spherical harmonics. 
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The details of these eigenfunctions can be written out as (these are the 

normalized spherical harmonics): 
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There are three recurrence relations for the associated Legendre Polynomials, 

we will use for understanding the transition rules (see page 375): 
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Also we need the associated Legendre orthogonality condition: 
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Next we review the Hydrogen atom.  Before we solve the Hydrogen atom, 

we started with a two-body system.  We found the eigenfunction like a plane 

wave with a relative Hamiltonian. 
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You remember the energy diagram and the degeneracy of the energy values 

for a state , ,n l m . 
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Now we think classically.  In classical mechanics, the electron orbits the 

positive nucleus and creates a dipole moment  cosP er t    where   is 

the phase. But in classical mechanics, the electron will lose energy as it 

accelerates around and it will ‘click’ to the center. 

 

In Quantum Mechanics, the physical variables change to operators: 

 

constant (time independent)
n n
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So it is not like the classical dipole.  For example: 
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can’t give light or radiation.  The experiments show that the spectra of 

sunlight have higher to lower discrete transitions.  Let’s think about 2 energy 

levels: 
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Because here we only study the dipole approximation (quadrapole 

transitions are neglected), we write it this way:  er. 
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Oscillation near the dipole 
' 'nn n n

E E   .  From the dipole relation, from 

theory 
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If it is non-zero, then a selection rule exists – the transition from , ,n l m  to 

', ', 'n l m  exists. 

 

The oscillation frequency is the energy difference divided by Planck’s 

constant.  I hope you can calculate that by yourself at home.  There are 

several tricks for calculating the transition rules – here, we only select one of 

them.  Start with: 
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For simplicity, let’s start with z.  cosz r  . 
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Now do another component 
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You can do the same thing for the last component but use equation . 
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To summarize: 
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What we’ve shown is that we can use the recurrence relations of the 

associated Legendre polynomials to determine which transitions are allowed 

and which are forbidden.  If you want to really calculate the real transition 

rate, you have to calculate it rigorously.  Our derivation did not include the 

very weak quadrapole interactions; these can be neglected.    

 

Example: 

If the initial excited state is at ' 3, ' 0, ' 0 3 0 0n l m    , then how many 

ways can it return to ground state 1 0 0 ?  

Answer: 
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  There are three ways. 
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The angular conservation   is given to the photon.  Every particle has 

spin.  A boson has +1 spin.  The spin is the rotation of the electron as it 

revolves around the nucleus – analogous to the rotation of Earth as it 

revolves around the Sun.  The spin number of the electron is ½.  In the next 

class we will learn about the spin, otherwise we can’t go further.  Spin 

interacts with the orbital angular momentum. 

 

An important experiment: Stern-Gerlach (picture on page 524).  The concept 

of spin explains the separation of a beam of electrons through a high 

gradient magnetic field. 

 

Homework: 10.6 

  

 


