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1-D Harmonic Oscillator 

We saw the infinite potential well gives a clear function.  Now we are 

studying the harmonic oscillator.  It is very important for 

 field theory  

 lattice vibration of solid state 

 heat transport and heat capacity 

 Hydrogen atom electron energy level 

 Electron going very fast along a pathway 

 

You can expand V by a Taylor Series: 
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We will learn that in Quantum Mechanics, the electron can also exist in the 

forbidden region.  Solve Schrödinger equation: 
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It turns out that this math is also good in near future 2
nd

 quantized quantum 

field theory.  (OK, Dr. Shen, we believe you…) 
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The Annihilation and Creation Operators 
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       Annihilation Operator

      Creation Operator

   not a Hermitian Operator
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Showing that the Annihilation and Creation Operators do not commute: 

   

 

       
0 0 0 0

2
2

2 2 2 2

2
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At home prove that N̂ is Hermitian.  Let’s look at the property of this 

technique developed by many scientists. 
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At home show that  
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â
 n



1n



1

ˆ
n n

a  
 



           

â
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Ground state - if we set: 0 0

 is the minimum allowed value of 
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Solve this problem for the eigenfun
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Now we look at the eigenvalues of H. 

 1
2              0,1,2,3,..

n
E n n    

The energy levels are quantized.  The ground state is 0

1
2E   it is the 

minimum energy for the oscillator. 
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Figure 7.8 and 7.9 on page 197 are discussed.  Application to molecular 

vibration spectrum is discussed.  Find the peak emission energy as  

 0

=1,2,3,...

'h n n    

 

Summary - Today we solved: 
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☼Homework: 7.4 understand this – the description in the book is not correct. 

 


