1-D Harmonic Oscillator

We saw the infinite potential well gives a clear function. Now we are studying the harmonic oscillator. It is very important for

- field theory
- lattice vibration of solid state
- heat transport and heat capacity
- Hydrogen atom electron energy level
- Electron going very fast along a pathway

You can expand V by a Taylor Series:

We will learn that in Quantum Mechanics, the electron can also exist in the forbidden region. Solve Schrödinger equation:

$$H\varphi = E\varphi
 \left(\frac{p^2}{2m} + \frac{k}{2}x^2\right)\varphi = E\varphi$$
The quantum mechanics Hamiltonian

It turns out that this math is also good in near future 2nd quantized quantum field theory. (OK, Dr. Shen, we believe you...)

The Annihilation and Creation Operators

 $a \equiv \frac{\beta}{\sqrt{2}} \left(x + \frac{ip}{m\omega_0} \right)$ Annihilation Operator $a_+ \equiv \frac{\beta}{\sqrt{2}} \left(x - \frac{ip}{m\omega_0} \right)$ Creation Operator $a \neq a_+$ not a Hermitian Operator $\beta^2 \equiv \frac{m\omega_0}{\hbar}$

Showing that the Annihilation and Creation Operators do not commute: Use this relation: $[x, p] = i\hbar$ to show that $[a, a_+] = 1$

$$\begin{bmatrix} a, a_{+} \end{bmatrix} = aa_{+} - a_{+}a$$

$$= \frac{\beta}{\sqrt{2}} \left(x + \frac{ip}{m\omega_{0}} \right) \frac{\beta}{\sqrt{2}} \left(x - \frac{ip}{m\omega_{0}} \right) - \frac{\beta}{\sqrt{2}} \left(x - \frac{ip}{m\omega_{0}} \right) \frac{\beta}{\sqrt{2}} \left(x + \frac{ip}{m\omega_{0}} \right)$$

$$= \frac{\beta^{2}}{2} \left[\left(\chi^{2} - \frac{ixp}{m\omega_{0}} + \frac{ipx}{m\omega_{0}} + \left(\frac{p}{m\omega_{0}} \right)^{2} \right) - \left(\chi^{2} + \frac{ixp}{m\omega_{0}} - \frac{ipx}{m\omega_{0}} + \left(\frac{p}{m\omega_{0}} \right)^{2} \right) \right]$$

$$= \frac{\beta^{2}}{2} \frac{i}{m\omega_{0}} \left[\left(px - xp \right) + \left(px - xp \right) \right]$$

$$= \frac{\beta^{2}}{2} \frac{i}{m\omega_{0}} 2 \left[p, x \right] = -\frac{i\beta^{2}}{m\omega_{0}} \left[x, p \right] = -\frac{i\beta^{2}}{m\omega_{0}} i\hbar = \frac{\beta^{2}\hbar}{m\omega_{0}} = 1$$
Note: $Q^{2} = \frac{m\omega_{0}}{\omega}$

Note: $\beta^2 \equiv \frac{m\omega_0}{\hbar}$

 $\hat{a}_{+}\hat{a} = \hat{a}\hat{a}_{+} + 1$ $\hat{N} = \hat{a}_{+}\hat{a} \leftarrow \text{eigenfunction of N let's you solve the Hamiltonian totally}$ $\hat{x} = \frac{(\hat{a} + \hat{a}_{+})}{\sqrt{2}\beta} \qquad \hat{p} = \frac{m\omega_{0}}{i} \frac{(\hat{a} - \hat{a}_{+})}{\sqrt{2}\beta}$ $\hat{H} = \hbar\omega_{0} \left(\hat{a}_{+}\hat{a} + \frac{1}{2}\right) = \hbar\omega_{0} \left(\hat{N} + \frac{1}{2}\right)$ $\hat{N}\varphi_{n} = n\varphi_{n} = \hat{a}_{+}\hat{a}\varphi_{n}$ *n* is only a number

 $\hat{a}\varphi_n$ is also a state function.

At home prove that \hat{N} is Hermitian. Let's look at the property of this technique developed by many scientists.

$$\hat{N}\hat{a}\varphi_n = \hat{a}_+\hat{a}\hat{a}\varphi_n = (\hat{a}\hat{a}_+ - 1)\hat{a}\varphi_n = \hat{a}\Big[\hat{N} - 1\Big]\varphi_n = \hat{a}(n-1)\varphi_n = (n-1)\hat{a}\varphi_n$$
$$\hat{N}\hat{a}\varphi_n = (n-1)\hat{a}\varphi_n$$
$$\hat{a}\varphi_n = \varphi_{n-1} \text{ the } \hat{a} \text{ operating on } \varphi_n \text{ changes into another eigenfunction}$$

At home show that

$$\hat{N}\hat{a}_{+}\varphi_{n} = (n+1)\hat{a}_{+}\varphi_{n}$$

 $\hat{a}_{+}\varphi_{n} = \varphi_{n+1}$
 $\hat{a}_{+}\varphi_{n} = \varphi_{n+1}$
 $\hat{a}_{-} \varphi_{n} = \varphi_{n-1} - \varphi_{n}$

$$\langle H \rangle \ge 0$$

 $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{k}{2}\hat{x}^2 = \hbar\omega(\hat{N} + \frac{1}{2}) = \hbar\omega(n + \frac{1}{2})$

$$I \rangle \ge 0$$

= $\frac{\hat{p}^2}{2m} + \frac{k}{2} \hat{x}^2 = \hbar \omega \left(\hat{N} + \frac{1}{2} \right) = \underbrace{\hbar \omega \left(n + \frac{1}{2} \right)}_{\ge 0}$

 $----- \varphi_n$

 $\therefore n < 0$ is not allowed

â____

Ground state - if we set: $a\varphi_m = 0 \Longrightarrow a\varphi_{m-1} = 0$ m is the minimum allowed value of nm = 0

 $a\varphi_0 = 0 = \varphi_{-1}$ this is not allowed

Solve this problem for the eigenfunction.

Now we look at the eigenvalues of H.

 $E_n = \hbar \omega \left(n + \frac{1}{2} \right)$ $n = 0, 1, 2, 3, \dots$

The energy levels are quantized. The ground state is $E_0 = \frac{1}{2}\hbar\omega$ it is the minimum energy for the oscillator.

 $\cdot \varphi_{n-1}$

Figure 7.8 and 7.9 on page 197 are discussed. Application to molecular vibration spectrum is discussed. Find the peak emission energy as

$$h\nu = \hbar\omega_0 \underbrace{\left(n-n'\right)}_{=1,2,3,\dots}$$

Summary - Today we solved:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{k}{2}\hat{x}^2 \Longrightarrow E_n = \hbar\omega\left(n + \frac{1}{2}\right)$$

 \oplus Homework: 7.4 understand this – the description in the book is not correct.