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1-D Harmonic Oscillator 

We saw the infinite potential well gives a clear function.  Now we are 

studying the harmonic oscillator.  It is very important for 

 field theory  

 lattice vibration of solid state 

 heat transport and heat capacity 

 Hydrogen atom electron energy level 

 Electron going very fast along a pathway 

 

You can expand V by a Taylor Series: 
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We will learn that in Quantum Mechanics, the electron can also exist in the 

forbidden region.  Solve Schrödinger equation: 
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It turns out that this math is also good in near future 2
nd

 quantized quantum 

field theory.  (OK, Dr. Shen, we believe you…) 
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The Annihilation and Creation Operators 
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Showing that the Annihilation and Creation Operators do not commute: 
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At home prove that N̂ is Hermitian.  Let’s look at the property of this 

technique developed by many scientists. 
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At home show that  
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Now we look at the eigenvalues of H. 
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The energy levels are quantized.  The ground state is 0

1
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minimum energy for the oscillator. 
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Figure 7.8 and 7.9 on page 197 are discussed.  Application to molecular 

vibration spectrum is discussed.  Find the peak emission energy as  
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Summary - Today we solved: 
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☼Homework: 7.4 understand this – the description in the book is not correct. 

 


